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Abstract-A theoretical model for the dissolution of polydisperse mixtures of solid particles in mechanically 
agitated liquids has been developed. Results of the theoretical analysis are presented in terms of expressions 
in which the mass of the solid solute time rate of mass transfer and the particle size distribution explicitly 

depend on time. The genera1 equations given in the paper are valid regardless of the particular form of the 
size distribution function. As an example, the general equations are integrated for the special case of the 
Rosin, Rammler and Sperling (RRS) distribution. Results of the analysis are presented in the form of 
graphical relations between dimensionless quantities. In order to verify the results obtained theoretically, 
experiments were carried out in which polydisperse mixtures of potassium sulfate particles were dissolved 

in distilled water. Very good agreement between theory and experiment has been observed 
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NOMENCLATURE 

interphase surface; 
concentration; 

concentration of the saturated solution; 
vessel inner diameter; 
function defined in equation (36) and 

tabulated in [8]; 

mass-transfer coefficient; 
total mass of the polydisperse mixture; 
mass of a single particle; 
time rate of mass transfer, equation (15); 
particle number; 
polydispersity index; 
size frequency distribution; 
cumulative oversize (residue) 
distribution; 
physical time; 

mass-transfer characteristic defined in 
equation (20); 

characteristic linear dimension of 
particle; 
time rate of particle size change; 

mean statistical particle size in the 
RRS-distribution. _ . 

Greek symbols 

P (9, m), incomplete gamma function defined in 
equation (35); 

P (m), gamma function; 

% dimensionless particle size defined in 
equation (31); 

9, dimensionless time defined in equation 

(28); 
5, dimensionless particle size defined in 

equation (26); 

PST density of the solid particle; 

Q, sphericity ; 
r, dimensionless time defined in 

equation (30); 

ti> function of time defined in equation (14). 

Other symbols 

AC, = c, - c, concentration difference. 

Superscript 

(x), refers to particles in the size range 
x to x+dx. 

Subscripts 

0, 
ma.x, 
min, 

initial value, t = 0; 

maximum value; 
minimum value. 

1. INTRODUCTION 

MOST studies dealing with heat- or mass-transfer 
problems in solid-fluid heterogeneous systems pub- 
lished so far were carried out for either a single solid 

particle or for monodisperse mixtures of solid particles. 
Since the majority of real mixtures is in fact of a poly- 

disperse nature, the theoretical description of the heat- 
or mass-transfer process across the solid-fluid 

boundary is of interest in various fields of process 

engineering. Particular cases of mass transfer across the 
interphase boundary may be classified, e.g. according 

to whether the particle size increases during the process 
(e.g. crystallization [12], chemical reactions [133) or 
whether a gradual particle size decrease is encountered 
(dissolution, combustion, disintegration, chemical 
reactions, sublimation, attrition of particles in moving- 
bed or fluidization reactors [4]). Some of the situations 
mentioned above had already been investigated in fairly 
general terms, e.g. fluidization reactors [ST], or 
crystallization [12]. 

The main object of this paper is to predict the 
behaviour of a system depicted qualitatively in Fig. 1. 

At time t = 0, the particle size distribution is 
characterized with the corresponding initial size 
frequency curve po. The mechanism of mass transfer 
from solid particles into the solvent results in decreasing 
the mass of the solid phase as a function of time. The 
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FIG. 1. Time dependency of the size frequency curve in 
dissolving a polydisperse mixture of solid particles. 

particle size decreases and particular fractions 
gradually disappear. It is assumed that, during the 
process, no solid particles are entering or leaving the 
system nor are new particles generated within the 
system. An example of situation for which the above 
mentioned features are typical is batch dissolution of 
polydisperse mixtures of solid particles in a 
mechanically agitated liquid. 

2. THEORETICAL MODEL 

Particle size distribution 
Particle size distribution analyses are carried out 

experimentally. Among the commonly used experi- 
mental methods, screening is the most frequently 
employed procedure. Results of a screening analysis are 
usually expressed in terms of the cummulative oversize 
(residue) curve R, giving the mass-fraction of particles 
greater than size x. On the other hand, the size 
frequency relation p, being a more illustrative descrip- 
tion of the size distribution, gives the mass fraction 
of particles within the size interval x to x + dx. Both 
quantities are interrelated by means of the simple 
expression, 

dR 

p= -dx’ 

Introducing the characteristic dimension x, which is the 
diameter of a spherical particle of the same mass as the 
actual nonspherical particle, the particle-mass Mp is 
expressed as 

Mp=;pSx3. (2) 

Mass of the differential fraction MC”) consisting of 
particles in the size interval x to x f dx then becomes 

MC*‘= Mpdx= -MdR, (3) 

where M denotes the total mass of the particle mixture. 
In order to express the size distribution character- 

istics p or R analytically, several expressions had been 
proposed in the past. A very useful and flexible 
analytical expression has been found by Rosin, 

Rammler [lo, 111 and independently by Sperling. 
This relation, which is in the literature usually referred 
to as the RRS-distribution, has the form 

R = exp[ - (x/.$“] . (4) 

or 
n x “-I 

p=- - 
(> .Y r 

exp[ -(x/-VI, (5) 

where n and X are material constants, characterizing 
the polydisperse mixture under investigation. The mean 
statistical diameter .U is a whole measure of the mixture 
fineness whereas n characterizes the degree of poly- 
dispersity. It is worth to note that all the quantities 
Mp, MC”), p, R as well as x defined above are time- 
dependent if particle size changes occur during the 
process. 

Mass transfer between the polydisperse mixture andjuid 
phase 

In what follows we shall assume that mass transfer 
occurs between the particles of the polydisperse system 
and the surrounding fluid. At time t = 0 the poly- 
disperse mixture is characterized with the initial mass 
M(t = 0) = n/r, and the corresponding initial cum- 
mulative oversize curve R(t = 0) = &, from which the 
initial size frequency distribution p(t = 0) = p0 may 
easily be established in view of equation (1). Due to 
the mass transfer between the phases, particle size may 
increase or decrease in the course of the particular 
process. From the equation for mass transfer through 
the interphase boundary we may express the time rate 
of particle size change in the form 

?i2= +w, 
dt 

The quantity W is determined through the particular 
mechanism of mass transfer and depends mainly on the 
physical and geometrical parameters of the system. In 
certain practically important situations, W = const. 
For the system defined above, we may determine the 
number of particles np (X) in the differential fraction MC’) 
characterized with the particle size range x to x + dx. 
If at the instant t, the corresponding mass of the 
differential fraction and size frequency distribution are 
MtX) and p respectively, we have 

or, 

ng’ = M’“‘[x(t)]/M, = M p[x(t)] dx/M,. (8) 

For t = 0, the initial number of particles follows from 
equation (8), 

n$?J = M”‘[x(O)]/M,O = MO PO dx/Mro (9) 

Since particles falling into the same size range will be 
generated or disappear simultaneously, their number 
must not depend on time, i.e. 

fig’ = n$$. (10) 



Mass-transfer kinetics in dissolving polydispetse solid materiats 637 

Keeping this in mind and assuming that changes of in the surrounding fluid solvent. Also, it is assumed that 
particle size shall not affect their shape, we can express the dependence of the mass-transfer coefficient upon 
the mass of the differential fraction MC”) from equations the particle size is insignificant in most cases [6]. The 

(2) and (8HlO), instantaneous value of the driving force is given by the 

AP = A4o Mppo dx/M,,o = Ma (x/x#pO dx . (11) 
difference of concentrations corresponding to the satu- 
ration at the temperature of solvent in the vessel and 

For a polydisperse mixture with a particle size varying in the surrounding fluid. In dissolving relatively small 
continuously from x0 min to xomax at t = 0, the quantities of highly soluble solid particles however, the 
instantaneous total mass is obtained by summing the driving force remains essentially constant. We shall 
differential contributions in equation (I 1), i.e. make use of this assumption throughout the following 

XB m-l analysis. The interphase surface for non-spherical 
~/‘~~ = 

I 
1x/kd3po dx . W) particles of size x may be expressed as 

x0 A, 

The instantaneous size frequency distribution is 
obtained from equation (8HlO) and (12), 

A(X) = P $Gx2 
CT ’ 

(18) 

Pbo,t) = !yjygQo = Po(X)W), 
where CI denotes particle sphericity. 

(13) Substitution for AtX) from equation (17) into (18) 
PO yields 

where the multiplicative factor M(X) = _ ?kxzn’“’ AC P ’ (19) 
d 

$0) = (x,xof3 ,/[r (x,xo)3po dx (14) If, on the other hand, the L.H.S. of equation (19) is 
expressed by differentiating equation (11) with respect 

is a function of time only. From equation (13) it is clear to time and su~equently use is made of equations (2) 
that the size frequency curves will ail be similar in and (8), elimination of the particle near ng) gives the 
subsequent time intervals. value of W in equation (6), 

On the other hand, the time rate of change of the 
solid phase is 

2kAc 
i= - I-=-w. 

OPS 
(20) 

(15) Integrating equation (20) with the initial condition 
x(t = 0) z x0 yields alinear relationship for the particle 

where the plus or minus sign refers to situations in size decrease 
which particle mass increases or decreases with time. Wt 

Substituting for M from equation (12) into equation 
x=x0 l-- ( ) . x0 

(15) we have, 

&-. +M d %-’ -- 0 
dt j 

(~/~o)~Po dx = 
x0 “sin 

In the course of the dissolution process, particular 
fractions ~adually disappear. From equation (21) it is 
not difficult to deduce that at time t fraction with the 

+ 3Mo 
j_ 

% *xx initial particle size 

(x’$xB)po dx , (16) x0= Wt, (22) 
X@ rni” 

since the limits of the integral are time-independent. 
must disappear, see Fig. 1. Substituting from equations 
(21) and (22) into the more general equation (12) yields 

Dissolution of the polydisperse solid phase 
the mass of the solvent as a function of time, i.e. 

Let us apply the general equations derived above to 
the particular case of dissolving a solid polydisperse 

M,Mo = R”‘(l-gyp,dx. (23) 

mixture in a stirred fluid. Kinetics of dissolving a 
differential fraction of particle size x is described with 

Similarly, an expression for the rate of mass transfer 

the fund~ental tr~sport equation, 
follows from equations (14), (20) and (21), 

dM’“’ k$‘X’ = -- = 
dt 

k A’“’ bc , (17) 
ti== ~w~~J~~~-~~~~od~. (24) 

where A@) denotes the surface of the particles within 
Finally, the instantaneous size frequency distribution p 

the differential fraction and AC stands for the driving 
is obtained combining equations (13), (14), (21) and (22), 

force of the process. The mass-transfer coefficient k 
may be determined either experimentally [7, 31, or 
predicted from existing criteria1 equations or empirical 
formulas [6, 31. We shall assume the mass-transfer 

In order to specify the quantities in equations (23), 

coeflicient to be constant in the course of dissolution. 
(24) and (25) for the particular case of the RRS- 

This assumption will not hold in situations in which 
distribution given in equation (4), it is convenient to 

dissolution of large quantities of solid solute results 
introduce the dimensionless particle size at t = 0, i.e. 

in substantial changes of the volumetric concentration * t = CGdxnr . (26) 
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Since from equations (4) and (26), 

PO dx = - dRO = exp[ - (x0/x0)“] d(xo/xo)” = 

exp(-5)d5, 

equation (23) turns into 

Defining the dimensionless time 

9 = @i‘Y/x,r, (28) 

where the bracketed term is the ratio of the real time 
to the time necessary for completing the dissolution 
of particles of mean statistical size .Yo and keeping in 
mind that the RRS distribution assumes a span of 
particle size from zero to infinity, equation (27) is 
rewritten into the form 

M/Ma= “[I-(9/Q”“]“exp(-5)dt. 
s 

(29) 
9 

Though theoretically correct, equation (29) is im- 
practical since it predicts infinitely long dissolution 
times. In order to circumvent this di~culty however, 
we can assume the maximum particle size to be that 
for which the value of the corresponding eummulative 
oversize function is R = 0.001 [lo, 11). Making use of 
equation (4), the maximum particle size thus becomes 

x0 max = (3 In 10)““~~ = 6.91 ‘jnZs. (30) 

Under this assumption, the upper limit of the integral 
in equation (27) attains a finite value t;,,, = 6.91 and 
the total time of complete dissolution is correctly 
predicted as t,,, = xomaJW. Therefore, it seems to be 
reasonable to normalize both variables defined in 
equations (26) and (28) with respect to c&,~. i.e. 

T = 3j6.91; q = r/6.91 . (30,31) 

In terms of the newly defined variables, equation (27) 
turns into the form 

M/M0 = 6.91 
s 
' [l -(r/q)r’“]‘exp( -6.91q)dq. (32) 
7 

Since r as well as yl vary in the interval (O-1) the 
latter form is more convenient for computational 
purposes. 

In a similar way, the time rate of mass transfer in 
equation (24) alte~ativeiy becomes 

El -(9/<)1’“]24-1i* exp(-r)dl, (33) 

or 
I-(&m) = I(O,m)[f -f@,m)] = 

a = 6911-I’” yj’ [l-(7/?p]2 
T 

XT -r’“exp(-6.91n)dtl. (34) where 

If necessary, the instantaneous size frequency distribu- 
tion is obtained transforming equation (25) with either 
& 3 or r, rl. 

and 

Numerical values of ~/~. = f(n) and 

~~*i(3~~ W) = C/3(2) 

T 

FIG. 2. Variation of the polydisperse solute mass with time. 

, , / , , , 
I I 

FIG. 3. Time rate of mass transfer vs time. 

were obtained by numerical integration of equations 
(32) and (34) on a digital computer. For some values 
of the polydispersity index n, results of the numerical 
analysis are shown graphically in Figs. 2 and 3. Large 
scale diagrams showing a finer subdivision of the 
n-range are available on the author’s address and will 
be sent on request. It is worth to note that all the 
integrals occuring in equations (29), (32), (33) and (34) 
are expressibIe in terms of the incomplete gamma- 
function I(& m) [l], 

r(O,m) = Wn), 

C(3.m) = & 
s 

:<m-‘exp(-t)d<. (36) 
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Using the tables of Pagurova [S], where highly accurate 
values of the 1(&m)-function are given, results of the 
numerical integration were checked for selected values 
of 9 and n disclosing a relative deviation not exceeding 
1.5%. 
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mounting a jacket around the vessel and circulating 
water from a thermostat into the gap. 

Variation of the solute concentration was measured 
employing the conductometric method [3]. Output 
signals from the measuring bridge, which were pro- 
portional to the instantaneous solute concentration, 
were fed to the input terminals of a line-recorder. 3. EXPERIMENTAL APPARATUS AND PROCEDURE 

The measurements were carried out on an apparatus 
which is shown schematically in Fig. 4. Agitator shaft 
rotation was derived from a hydraulic power unit. The 
rotational speed was accurately indicated by means of 
a photoelectric pickup attached to a frequency counter. 
The geometrical arrangement of the vessel and agitator 
impeller is shown in Fig. 5. 

r._.f”: 

iT I3 
8 6 5 

\ 
I / / 

4 I ’ 2 

FIG. 4. Theexperimental apparatus. l-Vessel, 2-impeller, 
3-hydraulic drive, 4-hydraulic power unit, L-photo- 
electric pickup, 6-frequency counter, 7-conductometric 

probe, I-measuring bridge, g-line recorder. 

FIG. 5. Details of the impeller and 
vessel arrangement. 

A flat bottom, cylindrical vessel with four baffles 
was used. The inner diameter of the vessel was 
D = 0.2m. The turbine impeller was operated at 
6OOrev/min in all experimental runs. This rotational 
speed proved to be well above the minimum value 
necessary to keep the particles in a state of complete 
suspension. Ali the me~urements were carried out at 
a constant temperature of 25°C. This was achieved by 

As a model material, almost spherical particles of 
crystalline potassium sulfate KzS04 were used. On a 
set of laboratory screens, the original granular material 
was separated into 21 fractions. These in turn were 
weighed and combined such as to give 24 samples with 
12 different combinations of the characteristic _?,, and 
n-parameters. In the first 12 samples the maximum 
particle size was held at the constant value 
x0 ,,,ax = 1.5 mm and the polydispersity index attained 
the values m = 1; 1.25; 1.75; 5; 10; 50. In the re- 
maining 12 samples, the mean statistical particle size 
was held constant ,%, = 0.232mm, the polydispersity 
index attained the same values as above. 

The concentration of the saturated KzSOL-solution 
in distilled water at 25°C is c, = 120 kgrn3. The 
average concentration in the course of measurement 
being c = 5.11 kgms3, the average value of the driving 
force was AC = 114.89 kgin3. From the recorded 
course of the dissolution curve of a monodisperse 
mixture, x0 = 0.232 mm, the value of W = 1.257 x lo- 5 
ms-* was obtained employing a linearization pro- 
cedure. Details of the procedure are given elsewhere 
[9]. For spherical particles 0 = 1, KzS04 density 
ps = 2660kgme3, the average value of the mass- 
transfer coefficient was experimentally determined from 
equation (20) to be k = 1.455 x 10-4ms-‘, for a mono- 
disperse sample. 

4. KXPERIMENTAL RESULTS AND 

CONCLUDING REMARKS 

Primary experimentaf data of the instantaneous 
solvent concentration 1 -M/MO and time t obtained 
from the line-recorder were brought into dimensionless 
form and plotted as M/MO vs Z. Typical examples of 
the experimental results are shown in Figs. 6 and 7. 

gJatic4l w2), n-50 

FIG. 6. Variation of the polydisperse solute mass with 
time, n = 50. 
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T 

FIG. 7. Variation of the polydisperse solute mass with 
time, n = 1 .O. 

In Fig. 6, the experimental data for n = 50, i.e. for a 
practically monodisperse mixture are compared with 
the theoretical prediction embodied in equation (32). 
Figure 7 presents the same comparison for the other 
extreme value of the polydis~~ity index, i.e. for n = 1 .O 
which characterizes a highly polydisperse mixture. 
From Figs. 6 and 7 it is clear that the agreement 
between theory and experiment is very good. In fact, 
relative deviation was always less than 6%. 

Since the experimental data support the predictions 
of the theoretical model, several conclusions may be 
drawn from what has been derived so far. First of all, 
it is clear from Figs. 2,6 and 7 that complete dissolution 
is reached more rapidly with lower values of the poiy- 
dispersity index n. In other words, the more poly- 
disperse behaviour the mixture exhibits, the faster is 
the complete dissolution approached. 

These conclusions are in accordance with the predic- 
tions of the time rate of mass transfer given in equations 
(33), (34) as well as in Fig. 3. It is not difficult to 
calculate, e.g. the initial values of the time rate of mass 
transfer from equation (33), 

3WMo * 
ni(S = 0) = 7 

s 0 5- 
‘/“exp(-r)dt = 

-----r” I-1 3WM” 

,%j ( ! n * 
(37) 

For n = 1 .O this expression yields an infinite initial rate 
of mass transfer which is very closely approximated 
by the experimental findings shown in Fig. 7. On the 
other hand, for a monodisperse mixture for which 
_UO = x0 and n = co theoretically, equation (37) predicts 

hi@ = 0, n + co) = 3wMo/xo $ 
as expected. 

(38) 

Obviously, many of the polydisperse mixtures 
encountered in practical applications cannot be 
described by a single RRS-distribution, i.e. with only 
two characteristic parameters, So and n. These 
situations may also be handled with the general 
technique outlined in this paper since all the theoretical 
results up to equation (25) are valid regardless of the 
particular form of the size frequency distribution. 
Thus it is always possible to divide the particle size 
range into smaller intervals in which the RRS- 
distribution is expected to hold. If necessary, any other 
size frequency distribution such as, e.g. the normal or 
logarithmic distribution may be substituted for po into 
the general equations and integrated numerically or 
analytically, if possible. As noted earlier, the analysis 
assumes the driving force to remain constant. This in 
turn restricts the applicability of the theory to situations 
in which dilute solutions are formed during the dis- 
solution process. 
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CINETIQUE DU TRANSFERT DE MASSE DANS LA DISSOLUTION 
IjE MATERIAUX SOLIDES POLYDISPERSES 

R&m&-Un modkle thitorique a &d&veloppC pour la dissolution de mtlanges polydispersb de particules 
solides dans des liquides agitts m~niquement. Les rbultats de l’analyse th&orique sont p&sent&s & t’aide 
d’expressions dans lesquelles la masse du dissoivant solide, le flux de transfer? massique et la distribution 
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de la taiiie des particules dependent explicitement du temps. Les equations g&n&ales dorm&es dans 
i’article sont valabies independamment de toute forme particuliere de la fonction de distribution en tailies 
de particuies. A titre d’exemple, les equations g&n&ales sont integrCs dans le cas particulier de la 
distribution de Rosin, Rammler et Speriing (RRS). Les risuitats de l’analyse sont pr$ent$ sous forme 
de relations graphiques entre quantitb adimensionnelies. Afin de verifier les risuitats obtenus par voie 
thtorique, on a effectue des experiences de dissolution de melanges poiydispersb de particules de sulfate 

de potassium dans l’eau distill&e. Un t& bon accord entre theorie et experience a et& obtenu. 
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KINETIK DES STOFF~BERGANGS BE1 DER AUFLOSUNG VON 
POLYD~SPERSEN FESTSTOFFEN 

~~ammenfassung-For die Auflosung von polydispersen Gemischen aus Festpartikeln in mechanisch 
geriihrten Fhissigkeiten wurde ein theoretisches Model1 entwickelt. Die Ergebnisse der theoretischen 
Analyse werden in Ausdriicken wiedergegeben, in welchen die Massedes festen Stoffes, die Geschwindigkeit 
des Masseniibergangs und die Verteilung der PartikelgrijBe explicit von der Zeit abhgngen. Die in der 
Arbeit angegebenen allgemeinen Gieichungen gelten unabhSingig von der spezielien Form der Funktion 
der Grobenverteilung. Ais Beispiel sind die ailgemeinen Gleichungen integriert fur den spezieilen Fall 
der Rosin, Rammler, Sperling (RRS) Verteilung. Die Ergebnisse der Anaiyse sind in Diagrammen mit 
dimensionslosen Parametern wiedergegeben. Zur Bestgtigung der theoretisch erhaltenen Resultate wurden 
Experimente durchgefiihrt, wobei sich polydisperse Gemische aus Kaliumsulfatteiichen in destiiliertem 
Wasser aufltisten. Sehr gute Ubereinstimmung zwischen Theorie und Untersuchung ergab sich dabei. 

K~HET~KA MACCOO~MEHA B PA~BOP~~~~XC~ 
~O~~~~C~EPCHbIX MATEPH~~ 

hSiiOTaUUsl - Paspa6oraua reoperriqecrcan ~onenb nnrr pacruopetirta nonunacnepcnbrx chfeceg 
TBepAbIX ~aCTm B Mexam'fecm nepeMenniBaeMbIx WiAKOCTKX. Pe3yJibTllTbI TeopeTH=Iecroro 

~Ha~~3an~eACTaB~eHbIBBUA~BbI~~~eHHfi,BKOTOpbIXM~CC~TBepAOsot~~3~,CKO~OCTbMaccoo6MeHa 

w pacnpeAeneHwe vacTw no pa3MepaM 3amcnT 0T BpeMemi. 06w;se ypameewa, npaBeAemibIe B 

~oKnaAe,coxpaasloTcmy6e30mocaTenbHo ~~~Ay(Py~~~~~ipacI~pep;e~~eHkifl~acT~q~fo pa3Mepahs. 

B Ka~ecTBenpu~epa,npOuHTerpapOBaHbIo6mueypaBHeaanAnacnyranpacnpeAeneHHano P03HHy, 

PaMMJIepy HCnepJlKHry(PPC). Pe3yJIbTaTbI aHaJISi3a l-IpeACTaBJIiHbI B BRAe rpZ@WZCKEiX COOTHO- 

~eHH~6e3p~3Mep~bIXBe~~~~~.~~~~~OBepKH~3yAbT~TOB,~O~y~eHHbIXTeO~TR~eCKHMCnOCO6OM, 

IIpOBOAWIEiCb 3KCnepHMeHTbI II0 paCTBOpeHIiKl nOJIliAlfCIIepCHbIX CMtZ.Ce& TIBCTHU CepHOKHCnOrO 
KaJIBR B AKCTtiJnipOBaHHOfi Bone. Ha6ntoaanocb 09eHb X0p0111t?e cofnacwe MeKAy TeopHe2t u 

3KCIIepKMeHTOM. 


